GEOPRIV
Network Working Group                                     H. Schulzrinne
Internet-Draft
Request for Comments: 4745                                   Columbia U.
Intended status:
Category: Standards Track                                  H. Tschofenig
Expires: February 11, 2007
                                           Siemens Networks GmbH & Co KG
                                                               J. Morris
                                                                     CDT
                                                              J. Cuellar
                                                                 Siemens
                                                                 J. Polk
                                                                   Cisco
                                                            J. Rosenberg
                                                                   Cisco Systems
                                                         August 10, 2006
                                                           February 2007

  Common Policy: A Document Format for Expressing Privacy Preferences
                draft-ietf-geopriv-common-policy-11.txt

Status of this This Memo

   By submitting this Internet-Draft, each author represents that any
   applicable patent or other IPR claims of which he or she is aware
   have been or will be disclosed, and any of which he or she becomes
   aware will be disclosed, in accordance with Section 6 of BCP 79.

   Internet-Drafts are working documents of

   This document specifies an Internet standards track protocol for the
   Internet Engineering
   Task Force (IETF), its areas, community, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid requests discussion and suggestions for a maximum
   improvements.  Please refer to the current edition of six months the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   The list status of current Internet-Drafts can be accessed at
   http://www.ietf.org/ietf/1id-abstracts.txt.

   The list this protocol.  Distribution of Internet-Draft Shadow Directories can be accessed at
   http://www.ietf.org/shadow.html.

   This Internet-Draft will expire on February 11, 2007. this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2006). IETF Trust (2007).

Abstract

   This document defines a framework for authorization policies
   controlling access to application specific application-specific data.  This framework
   combines common location- and presence-specific authorization
   aspects.  An XML schema specifies the language in which common policy
   rules are represented.  The common policy framework can be extended
   to other application domains.

Table of Contents

   1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  4 ....................................................3
   2. Terminology  . . . . . . . . . . . . . . . . . . . . . . . . .  6 .....................................................4
   3. Modes of Operation . . . . . . . . . . . . . . . . . . . . . .  7 ..............................................4
      3.1. Passive Request-Response - PS as Server (Responder)  . . .  7 ........5
      3.2. Active Request-Response - PS as Client (Initiator) . . . .  7 .........5
      3.3. Event Notification . . . . . . . . . . . . . . . . . . . .  7 .........................................5
   4. Goals and Assumptions  . . . . . . . . . . . . . . . . . . . .  9 ...........................................6
   5. Non-Goals  . . . . . . . . . . . . . . . . . . . . . . . . . . 11 .......................................................7
   6. Basic Data Model and Processing  . . . . . . . . . . . . . . . 12 .................................8
      6.1. Identification of Rules  . . . . . . . . . . . . . . . . . 13 ....................................9
      6.2. Extensions . . . . . . . . . . . . . . . . . . . . . . . . 13 .................................................9
   7. Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 14 .....................................................10
      7.1. Identity Condition . . . . . . . . . . . . . . . . . . . . 14 ........................................10
           7.1.1. Overview . . . . . . . . . . . . . . . . . . . . . . . 14 ...........................................10
           7.1.2. Matching One Entity  . . . . . . . . . . . . . . . . . 14 ................................11
           7.1.3. Matching Multiple Entities . . . . . . . . . . . . . . 15 .........................11
      7.2. Single Entity  . . . . . . . . . . . . . . . . . . . . . . 19 .............................................14
      7.3. Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . 19 ....................................................15
      7.4. Validity . . . . . . . . . . . . . . . . . . . . . . . . . 21 ..................................................16
   8. Actions  . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 ........................................................17
   9. Transformations  . . . . . . . . . . . . . . . . . . . . . . . 24 ................................................18
   10. Procedure for Combining Permissions  . . . . . . . . . . . . . 25 ...........................18
      10.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . 25 .............................................18
      10.2. Algorithm  . . . . . . . . . . . . . . . . . . . . . . . . 25 Combining Rules (CRs) ....................................18
      10.3. Example  . . . . . . . . . . . . . . . . . . . . . . . . . 26 ..................................................19
   11. Meta Policies  . . . . . . . . . . . . . . . . . . . . . . . . 29 .................................................21
   12. Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 .......................................................21
   13. XML Schema Definition  . . . . . . . . . . . . . . . . . . . . 31 .........................................22
   14. Security Considerations  . . . . . . . . . . . . . . . . . . . 34 .......................................25
   15. IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 35 ...........................................25
      15.1. Common Policy Namespace Registration . . . . . . . . . . . 35 .....................25
      15.2. Content-type registration Registration for
            'application/auth-policy+xml'  . . . . . . . . . . . . . . 35 ............................26
      15.3. Common Policy Schema Registration  . . . . . . . . . . . . 37 ........................27
   16. References . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ....................................................28
      16.1. Normative References . . . . . . . . . . . . . . . . . . . 38 .....................................28
      16.2. Informative References . . . . . . . . . . . . . . . . . . 38 ...................................28
   Appendix A. Contributors  . . . . . . . . . . . . . . . . . . . . 39 ..........................................29
   Appendix B. Acknowledgments . . . . . . . . . . . . . . . . . . . 40
   Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 41
   Intellectual Property and Copyright Statements . . . . . . . . . . 43 .......................................29

1.  Introduction

   This document defines a framework for creating authorization policies
   for access to application specific application-specific data.  This framework is the
   result of combining the common aspects of single authorization
   systems that more specifically control access to presence and
   location information and that previously had been developed
   separately.  The benefit of combining these two authorization systems
   is two-fold.  First, it allows to build building a system which that enhances the
   value of presence with location information in a natural way and
   reuses the same underlying authorization mechanism.  Second, it
   encourages a more generic authorization framework with mechanisms for
   extensibility.  The applicability of the framework specified in this
   document is not limited to policies controling controlling access to presence
   and location information data, but can be extended to other
   application domains.

   The general framework defined in this document is intended to be
   accompanied and enhanced by application-specific policies specified
   elsewhere.  The common policy framework described here is enhanced by
   domain-speific
   domain-specific policy documents, including presence [7] and location
   [8].  This relationship is shown in Figure 1.

                           +-----------------+
                           |                 |
                           |     Common      |
                           |     Policy      |
                           |                 |
                           +---+---------+---+
                              /|\       /|\
                               |         |
      +-------------------+    |         |    +-------------------+
      |                   |    | enhance |    |                   |
      | Location-specific |    |         |    | Presence-specific |
      |      Policy       |----+         +----|      Policy       |
      |                   |                   |                   |
      +-------------------+                   +-------------------+

                   Figure 1: Common Policy Enhancements

   This document starts with an introduction to the terminology in
   Section 2, an illustration of basic modes of operation in Section 3,
   a description of goals (see Section 4) and non-goals (see Section 5)
   of the policy framework, followed by the data model in Section 6.
   The structure of a rule, namely namely, conditions, actions actions, and
   transformations, are is described in Section Sections 7, in Section 8 8, and in
   Section 9.  The procedure
   for combining permissions is explained in Section 10 and used when
   conditions for more than one rule fires. are satisfied.  A short description
   of meta policies is given in Section 11.  An example is provided in
   Section 12.  The XML schema will be discussed in Section 13.  IANA
   considerations in Section 15 follow security considerations in
   Section 14.

2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT","RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [1].

   This document introduces the following terms:

   PT - Presentity / Target:  The PT is the entity about whom
        information has been requested.

   RM - Rule Maker:  The RM is an entity which that creates the authorization
        rules which that restrict access to data items.

   PS - (Authorization) Policy Server:  This entity has access to both
        the authorization policies and to the data items.  In location-
        specific applications, the entity PS is labeled as location
        server (LS).

   WR - Watcher / Recipient:  This entity requests access to data items
        of the PT.  An access operation might be either be a read, write a write, or be any
        other operation.  In case of access to location
      information it might be a read operation.

   A policy is given by a 'rule set' that contains an unordered list of
   'rules'.  A 'rule' has a 'conditions', an 'actions' 'actions', and a
   'transformations' part.

   The term 'permission' indicates the action and transformation
   components of a 'rule'.

   The term 'using protocol' is defined in [9].  It refers to the
   protocol which is used to request access to and to return privacy
   sensitive privacy-sensitive
   data items.

3.  Modes of Operation

   The abstract sequence of operations can roughly be described as
   follows.  The PS receives a query for data items for a particular PT,
   via the using protocol.  The using protocol (or more precisely precisely, the
   authentication protocol) provides the identity of the requestor,
   either at the time of the query or at the subscription time.  The
   authenticated identity of the WR, together with other information
   provided by the using protocol or generally available to the server,
   is then used for searching through the rule set.  All matching rules
   are combined according to a permission combining algorithm described
   in Section 10.  The combined rules are applied to the application
   data, resulting in the application of privacy based on the
   transformation policies.  The resulting application data is returned
   to the WR.

   Three different modes of operation can be distinguished:

3.1.  Passive Request-Response - PS as Server (Responder)

   In a passive request-response mode, the WR queries the PS for data
   items about the PT.  Examples of protocols following this mode of
   operation include HTTP, FTP, LDAP, finger or finger, and various RPC remote
   procedure call (RPC) protocols, including Sun RPC, DCE, DCOM, Corba and SOAP. Distributed
   Computing Environment (DCE), Distributed Component Object Model
   (DCOM), common object request broker architecture (Corba), and Simple
   Object Access Protocol (SOAP).  The PS uses the
   ruleset rule set to determine
   whether the WR is authorized to access the PTs PT's information, refusing
   the request if necessary.  Furthermore, the PS might filter
   information by removing elements or by reducing the resolution of
   elements.

3.2.  Active Request-Response - PS as Client (Initiator)

   Alternatively, the PS may contact the WR and convey data items.
   Examples include HTTP, SIP session setup (INVITE request), H.323
   session setup or SMTP.

3.3.  Event Notification

   Event notification adds a subscription phase to the "Active Request-
   Response - PS as Client (Initiator)" mode of operation.  A watcher or
   subscriber asks to be added to the notification list for a particular
   presentity or event.  When the presentity changes state or the event
   occurs, the PS sends a message to the WR containing the updated
   state.  (Presence is a special case of event notification; thus, we
   often use the term interchangeably.)

   In addition, the subscriber may itself add a filter to the
   subscription, limiting the rate or content of the notifications.  If
   an event, after filtering by the rulemaker-provided rule-maker-provided rules and by the
   subscriber-provided rules, only produces the same notification
   content that was sent previously, no event notification is sent.

   A single PS may authorize access to data items in more than one mode.
   Rather than having different rule sets for different modes all three
   modes are supported with a one rule set schema.  Specific instances
   of the rule set can omit elements that are only applicable to the
   subscription model.

4.  Goals and Assumptions

   Below, we summarize our design goals and constraints.

   Table representation:

      Each rule must be representable as a row in a relational database.
      This design goal should allow efficient policy implementation by
      utilizing standard database optimization techniques.

   Permit only:

      Rules only provide permissions rather than denying them.  Removing
      a rule can never increase permissions.  Allowing both 'permit' and
      'deny' actions would require some rule ordering which had
      implications  Depending on the
      interpretation of 'deny' and 'permit' rules, the ordering of rules
      might matter, making updating rule sets more complicated since
      such update operations executed on these rules. mechanisms would have to support insertion at specific
      locations in the rule set.  Additionally, it would make
      distributed rule sets more complicated.  Hence, only 'permit'
      actions are allowed which that result in more efficient rule processing.
      This also implies that rule ordering is not important.
      Consequently, to make a policy decision requires processing all
      rules.

   Additive permissions:

      A query for access to data items is matched against the rules in
      the rule database.  If several rules match, then the overall
      permissions granted to the WR are the union of those permissions.
      A more detailed discussion is provided inSection in Section 10.

   Upgradeable:

      It should be possible to add additional rules later, without
      breaking PSs that have not been upgraded.  Any such upgrades must
      not degrade privacy constraints, but PSs not yet upgraded may
      reveal less information than the rulemaker rule maker would have chosen.

   Capability support:

      In addition to the previous goal, a RM should be able to determine
      which extensions are supported by the PS.  The mechanism used to
      determine the capability of a PS is outside the scope of this
      specification.

   Protocol-independent:

      The rule set supports constraints on both notifications or queries
      as well as subscriptions for event-based systems such as presence
      systems.

   No false assurance:

      It appears more dangerous to give the user the impression that the
      system will prevent disclosure automatically, but fail to do so
      with a significant probability of operator error or
      misunderstanding, than to force the user to explicitly invoke
      simpler rules.  For example, rules based on weekday and time-of-
      day ranges seem particularly subject to misinterpretation and
      false assumptions on part of the RM.  (For example, a non-
      technical RM would probably assume that the rules are based on the
      timezone
      time zone of his current location, which may not be known to other
      components of the system.)

5.  Non-Goals

   We explicitly decided that a number of possibly worthwhile
   capabilities are beyond the scope of this first version.  Future
   versions may include these capabilities, using the extension
   mechanism described in this document.  Non-goals include:

   No external references:

      Attributes within specific rules cannot refer to external rule
      sets, databases, directories directories, or other network elements.  Any such
      external reference would make simple database implementation
      difficult and hence they are not supported in this version.

   No regular expression: expressions:

      Conditions are matched on equality or 'greater-than'-style
      comparisons, not regular expressions, partial matches such as the
      SQL LIKE operator (e.g., LIKE "%foo%") "%foo%"), or glob-style matches
      ("*@example.com").  Most of these are better expressed as explicit
      elements.

   No repeat times:

      Repeat times (e.g., every day from 9am 9 am to 4pm) 4 pm) are difficult to
      make work correctly, due to the different time zones that PT, WR,
      PS
      PS, and RM may occupy.  It appears that suggestions for including
      time intervals are often based on supporting work/non-work
      distinctions, which unfortunately are difficult to capture by time
      alone.  Note that this feature must not be confused with the
      'Validity' element that provides a mechanism to restrict the
      lifetime of a rule.

6.  Basic Data Model and Processing

   A rule set (or synonymously, a policy) consists of zero or more
   rules.  The ordering of these rules is irrelevant.  The rule set can
   be stored at the PS and conveyed from RM to PS as a single document,
   in subsets or as individual rules.  A rule consists of three parts - parts:
   conditions (see Section 7), actions (see Section 8), and
   transformations (see Section 9).

   The conditions part is a set of expressions, each of which evaluates
   to either TRUE or FALSE, i.e. each of which is equipped with a value
   of either TRUE or FALSE by the PS. FALSE.  When a WR asks for information about a PT,
   the PS goes through each rule in the rule set.  For each rule, it
   evaluates the expressions in the conditions part.  If all of the
   expressions evaluate to TRUE, then the rule is applicable to this
   request.  Generally, each expression specifies a condition based on
   some variable that is associated with the context of the request.
   These variables can include the identity of the WR, the domain of the
   WR, the time of day, or even external variables, such as the
   temperature or the mood of the PT.

   Assuming that the rule is applicable to the request, the actions and
   transformations (commonly referred to as permissions) in the rule
   specify how the PS is supposed to handle this request.  If the
   request is to view the location of the PT, or to view its presence,
   the typical action is "permit", which allows the request to proceed.

   Assuming the action allows the request to proceed, the
   transformations part of the rule specifies how the information about
   the PT - -- their location information, their presence, etc. - -- is
   modified before being presented to the WR.  These transformations are
   in the form of positive permissions.  That is, they always specify a
   piece of information which that is allowed to be seen by the WR.  When a PS
   processes a request, it takes the transformations specified across
   all rules that match, and creates the union of them.  For computing
   this union union, the data type, such as Integer, Boolean, Set, or the
   Undef data type, plays a role.  The details of the algorithm for
   combining permissions is described in Section 10.  The resulting
   union effectively represents a "mask" - -- it defines what information
   is exposed to the WR.  This mask is applied to the actual location or
   presence data for the PT, and the data which that is permitted by the mask
   is shown to the WR.  If the WR request requests a subset of information only
   (such as city-level civil civic location data only, instead of the full
   civil
   civic location information), the information delivered to the WR MUST
   be the intersection of the permissions granted to the WR and the data
   requested by the WR.

   In accordance to this document, rules

   Rules are encoded in XML.  To this end, Section 13 contains an XML
   schema defining the Common Policy Markup Language.  This, however, is
   purely an exchange format between RM and PS.  The format does not
   imply that the RM or the PS use this format internally, e.g., in
   matching a query with the policy rules.  The rules are designed so
   that a PS can translate the rules into a relational database table,
   with each rule represented by one row in the database.  The database
   representation is by no means mandatory; we will use it as a
   convenient and widely-understood example of an internal
   representation.  The database model has the advantage that operations
   on rows have tightly defined meanings.  In addition, it appears
   plausible that larger-scale implementations will employ a backend
   database to store and query rules, as they can then benefit from
   existing optimized indexing, access control, scaling scaling, and integrity
   constraint mechanisms.  Smaller-scale implementations may well choose
   different implementations, e.g., a simple traversal of the set of
   rules.

6.1.  Identification of Rules

   Each rule is equipped with a parameter that identifies the rule.
   This rule identifier is an opaque token chosen by the RM.  A RM MUST
   NOT use the same identifier for two rules that are available to the
   PS at the same time for a given PT.  If more than one RM modifies the
   same rule set set, then it needs to be ensured that a unique identifier
   is chosen for each rule.  A RM can accomplish this goal by retrieving
   the already specified ruleset rule set and to choose choosing a new identifier for a
   rule that is different from the existing rule set.

6.2.  Extensions

   The policy framework defined in this document is meant to be
   extensible towards specific application domains.  Such an extension
   is accomplished by defining conditions, actions actions, and transformations
   that are specific to the desired application domain.  Each extension
   MUST define its own namespace.

   Extensions cannot change the schema defined in this document, and
   this schema is not expected to change excepting a except via revision to this
   specification, and that
   specification.  Therefore, no versioning procedures for this schema
   or namespace are therfore provided.

7.  Conditions

   The access to data items needs to be matched with the rule set stored
   at the PS.  Each instance of a request has different attributes
   (e.g., the identity of the requestor) that are used for
   authorization.  A rule in a rule set might have a number of
   conditions that need to be met before executing the remaining parts
   of a rule (i.e., actions and transformations).  Details about rule
   matching are described in Section 10.  This document specifies only a
   few conditions (i.e., identity, sphere, and validity).  Further
   condition elements can be added via extensions to this document.  If
   a child element of the <conditions> element is in a namespace that is
   not known or not supported, then this child element evaluates to
   FALSE.

   As noted in Section 5, conditions are matched on equality or "greater
   than" style comparisons, rather than regular expressions.  Equality
   is determined according to the rules for the data type associated
   with the element in the schema given in Section 13, unless explicit
   comparison steps are included in this document.  For xs:anyURI types,
   readers may wish to consult [2] for its discussion xs:anyURI, as well
   as the text in Section 13.

7.1.  Identity Condition

7.1.1.  Overview

   The identity condition restricts matching of a rule either to a
   single entity or a group of entitites. entities.  Only authenticated entities
   can be matched; acceptable means of authentication are defined in
   protocol-specific documents.  If the <identity> element is absent, or
   it is present but is empty (meaning that there are no child
   elements),
   identities are not considered, and thus, other conditions in the rule
   apply to any user, authenticated or not.

   The <identity> condition is considered TRUE if any of its child
   elements (e.g., the <one/> and the <many/> elements defined in this
   document) evaluate to TRUE, i.e., the results of the individual child
   element are combined using a logical OR.

   If a child element of the <identity> element is in a namespace that
   is not known or not supported, it can be ignored. then this child element evaluates to
   FALSE.

7.1.2.  Matching One Entity

   The <one> element matches the authenticated identity (as contained in
   the 'id' attribute) of exactly one entity or user.  For
   considerations regarding the 'id' attribute attribute, refer to Section 7.2.

   An example is shown below:

   <?xml version="1.0" encoding="UTF-8"?>
   <ruleset xmlns="urn:ietf:params:xml:ns:common-policy">

       <rule id="f3g44r1">
           <conditions>
               <identity>
                   <one id="sip:alice@example.com"/>
                   <one id="tel:+1-212-555-1234" />
                   <one id="mailto:bob@example.net" />
               </identity>
           </conditions>
           <actions/>
           <transformations/>
       </rule>

   </ruleset>

   This example matches if the authenticated identity of the WR is
   either sip:alice@example.com, tel:+1-212-555-1234 tel:+1-212-555-1234, or
   mailto:bob@example.net.

7.1.3.  Matching Multiple Entities

   The <many> element is a mechanism to perform authorization decisions
   based on the domain part of the authenticated identity.  As such, it
   allows to match matching a large and possibly unknown number of users within a
   domain.

   Furthermore, it is possible to include one or multiple <except>
   elements to exclude either individual users or users belonging to a
   specific domain.  Excluding individual entities is implemented using
   a <except id="..."/> statement.  The semantic of the 'id' attribute
   of the <except> element has the same meaning as the 'id' attribute of
   the <one> element (see Section 7.2).  Excluding users belonging to a
   specific domain is implemented using the <except domain="..."/>
   element that excludes any user from the indicated domain.

   If multiple <except> elements are listed as child elements of the
   <many> element element, then the result of each <except> element is combined
   using a logical OR.

   Common policy MUST either use UTF-8 or UTF-16 to store domain names
   in the 'domain' attribute.  For non-IDNs, lower-case non-IDNs (Internationalized Domain
   Names), lowercase ASCII SHOULD be used.  For the comparison operation
   between the value stored in the 'domain' attribute and the domain
   value provided via the using protocol (referred to as "protocol
   domain identifier") identifier"), the following rules are applicable:

   1.  Translate percent-encoding for either string.

   2.  Convert both domain strings using the toASCII ToASCII operation described
       in RFC 3490 [3].

   3.  Compare the two domain strings for ASCII equality, for each
       label.  If the string comparison for each label indicates
       equality, the comparison succeeds.  Otherwise, the domains are
       not equal.

   If the conversion fails in step (2), the domains are not equal.

7.1.3.1.  Matching Any Authenticated Identity

   The <many/> element without any child elements or attributes matches
   any authenticated user.

   The following example shows such a rule that matches any
   authenticated user:

   <?xml version="1.0" encoding="UTF-8"?>
   <ruleset xmlns="urn:ietf:params:xml:ns:common-policy">

       <rule id="f3g44r5">
           <conditions>
               <identity>
                 <many/>
               </identity>
           </conditions>
           <actions/>
           <transformations/>
       </rule>

   </ruleset>

   The following rule, in comparison, would match any user,
   authenticated and unauthenticated:

   <?xml version="1.0" encoding="UTF-8"?>
   <ruleset xmlns="urn:ietf:params:xml:ns:common-policy">

       <rule id="f3g44r5">
           <conditions>
             <identity/>
           </conditions>
           <actions/>
           <transformations/>
       </rule>

   </ruleset>

7.1.3.2.  Matching Any Authenticated Identity Excepting Except Enumerated
          Domains/Identities

   The <many> element enclosing one or more <except domain="..."/>
   elements matches any user from any domain except those enumerated.
   The <except id="..."/> element excludes particular users.  The
   semantic
   semantics of the 'id' attribute of the <except> element is described
   in Section 7.2.  The results of the child elements of the <many>
   element are combined using a logical OR.

   An example is shown below:

   <?xml version="1.0" encoding="UTF-8"?>
   <ruleset xmlns="urn:ietf:params:xml:ns:common-policy">

       <rule id="f3g44r1">
           <conditions>
               <sphere value="work"/>
               <identity>
                   <many>
                       <except domain="example.com"/>
                       <except domain="example.org"/>
                       <except id="sip:alice@bad.example.net"/>
                       <except id="sip:bob@good.example.net"/>
                       <except id="tel:+1-212-555-1234" />
                       <except id="sip:alice@example.com"/>
                   </many>
               </identity>
               <validity>
                   <from>2003-12-24T17:00:00+01:00</from>
                   <until>2003-12-24T19:00:00+01:00</until>
               </validity>
           </conditions>
           <actions/>
           <transformations/>
       </rule>

   </ruleset>

   This example matches all users except any user in example.com, or any
   user in example.org or the particular users alice@bad.example.net,
   bob@good.example.net
   bob@good.example.net, and the user with the telephone number
   'tel:+1-212-555-1234'.  The last 'except' element is redundant since
   alice@example.com is already excluded through the first line.

7.1.3.3.  Matching Any Authenticated Identity Within within a Domain Excepting Except
          Enumerated Identities

   The <many> element with a 'domain' attribute and zero or more <except
   id="..."/> elements matches any authenticated user from the indicated
   domain except those explicitly enumerated.  The semantic semantics of the 'id'
   attribute of the <except> element is described in Section 7.2.

   It is nonsensical to have domains in the 'id' attribute that do not
   match the value of the 'domain' attribute in the enclosing <many>
   element.

   An example is shown below:

   <?xml version="1.0" encoding="UTF-8"?>
   <ruleset xmlns="urn:ietf:params:xml:ns:common-policy">

       <rule id="f3g44r1">
           <conditions>
               <identity>
                   <many domain="example.com">
                       <except id="sip:alice@example.com"/>
                       <except id="sip:bob@example.com"/>
                   </many>
               </identity>
           </conditions>
           <actions/>
           <transformations/>
       </rule>

   </ruleset>

   This example matches any user within example.com (such as
   carol@example.com) except alice@example alice@example.com and bob@example.com.

7.2.  Single Entity

   The 'id' attribute used in the <one> and in the <except> element
   refers to a single entity.  In the subsequent text text, we use the term
   'single-user' entity
   'single-user entity' as a placeholder for the <one> and the <except>
   element.  The <except> element fulfills the purpose of excluding
   elements from the solution set.

   A single-user entity matches the authenticated identity (as contained
   in the 'id' attribute) of exactly one entity or user.  If there is a
   match, the single-user entity is considered TRUE.  The single- user single-user
   entity MUST NOT contain a 'domain' attribute.

   The 'id' attribute contains an identity that MUST first be expressed
   as a URI.  Applications using this framework must describe how the
   identities they are using can be expressed as a URIs.

7.3.  Sphere

   The <sphere> element belongs to the group of condition elements.  It
   can be used to indicate a state (e.g., 'work', 'home', 'meeting',
   'travel') the PT is currently in.  A sphere condition matches only if
   the PT is currently in the state indicated.  The state may be
   conveyed by manual configuration or by some protocol.  For example,
   RPID [10] provides the ability to inform the PS of its current
   sphere.  The application domain needs to describe in more detail how
   the sphere state is determined.  Switching from one sphere to another
   causes a switch between different modes of visibility.  As a result result,
   different subsets of rules might be applicable.

   The content of the 'value' attribute of the <sphere> element MAY
   contain more than one token.  The individual tokens MUST be separated
   by a blank character.  A logical OR is used for the matching the
   tokens against the sphere settings of the PT.  As an example, if the
   the
   content of the 'value' attribute in the sphere attribute contains two
   tokens 'work' and 'home' then this part of the rule matches if the
   sphere for a particular PT is either 'work' OR 'home'.  To compare
   the content of the 'value' attribute in the <sphere> element with the
   stored state information about the PT's sphere setting a
   case insensitive
   case-insensitive string comparison MUST be used for each individual
   token.  There is no neither a registry for these values nor a language language-
   specific indication of the sphere content.  As such, the tokens are
   treated as opaque strings.

   <?xml version="1.0" encoding="UTF-8"?>
   <ruleset xmlns="urn:ietf:params:xml:ns:common-policy">

     <rule id="f3g44r2">
       <conditions>
         <sphere value="work"/>
         <identity>
           <one id="sip:andrew@example.com"/>
         </identity>
       </conditions>
       <actions/>
       <transformations/>
     </rule>
     <rule id="y6y55r2">
       <conditions>
         <sphere value="home"/>
         <identity>
           <one id="sip:allison@example.com"/>
         </identity>
       </conditions>
       <actions/>
       <transformations/>
     </rule>

     <rule id="z6y55r2">
       <conditions>
         <identity>
              <one id="sip:john@doe.example.com"/>
         </identity>
         <sphere value="home work"/>
       </conditions>
       <actions/>
       <transformations/>
     </rule>
   </ruleset>

   The rule example above illustrates that the rule with the entity
   andrew@example.com matches if the sphere is been set to 'work'.  In
   the second rule with rule, the entity allison@example.com matches if the sphere
   is set to 'home'.  The third rule also matches since the the value in the
   sphere element also contains the token 'home'.

7.4.  Validity

   The <validity> element is the third condition element specified in
   this document.  It expresses the rule validity period by two
   attributes, a starting and a an ending time.  The validity condition is
   TRUE if the current time is greater than or equal to at least one
   <from> child, but less than the <until> child after it.  This
   represents a logical OR operation across each <from> and <until>
   pair.  Times are expressed in XML dateTime format.  A rule maker
   might not have always have access to the PS to invalidate some rules which that
   grant permissions.  Hence  Hence, this mechanism allows to invalidate invalidating granted
   permissions automatically without further interaction between the
   rule maker and the PS.  The PS does not remove the rules rules; instead the
   rule maker has to clean them up.

   An example of a rule fragment is shown below:

   <?xml version="1.0" encoding="UTF-8"?>
   <ruleset xmlns="urn:ietf:params:xml:ns:common-policy">

     <rule id="f3g44r3">
       <conditions>
           <validity>
               <from>2003-08-15T10:20:00.000-05:00</from>
               <until>2003-09-15T10:20:00.000-05:00</until>
           </validity>
       </conditions>
       <actions/>
       <transformations/>
     </rule>
   </ruleset>

   The <validity> element MUST have the <from> and <until> subelements
   in pairs.  Multiple <from> and <until> elements might appear in pairs
   (i.e., without nesting of <from> and <until> elements).  Using
   multiple <validity> elements as subelements of the <conditions>
   element is not useful since all subelements of the <conditions>
   element are combined as a logical AND.

8.  Actions

   While conditions are the 'if'-part of rules, actions and
   transformations build the 'then'-part of them. form their 'then'-part.  The actions and
   transformations parts of a rule determine which operations the PS
   MUST execute after having received from a WR a data access request
   that matches all conditions of this rule.  Actions and
   transformations only permit certain operations; there is no 'deny'
   functionality.  Transformations exclusively specify PS-side
   operations that lead to a modification of the data items requested by
   the WR.  Regarding location data items, for instance, a
   transformation could force the PS to lower the precision of the
   location information which that is returned to the WR.

   Actions, on the other hand, specify all remaining types of operations
   the PS is obliged to execute, i.e., all operations that are not of
   transformation type.  Actions are defined by application specific application-specific
   usages of this framework.  The reader is referred to the
   corresponding extensions to see examples of such elements.

9.  Transformations

   Two sub-parts follow the conditions part of a rule: transformations
   and actions.  As defined in Section 8, transformations specify
   operations that the PS MUST execute and that modify the result which that
   is returned to the WR.  This functionality is particularly helpful in
   reducing the granularity of information provided to the WR, as as, for
   example
   example, required for location privacy.  Transformations are defined
   by application specific application-specific usages of this framework.

   A simple transformation example is provided in Section 10.

10.  Procedure for Combining Permissions

10.1.  Introduction

   This section describes the mechanism how rules are selected and how actions and
   permissions are determined. When a PS receives a request for access
   to evaluate privacy-sensitive data, the final result of
   a rule evaluation.  The result request is reflected matched against the rule
   set.  A rule matches if all conditions contained as child elements in
   the action and
   transformation part <conditions> element of a rule.  This procedure rule evaluate to TRUE. Each type of
   condition defines when it is sometimes referred
   as conflict resolution.

   We use the following terminology (which in parts has already been
   introduced in previous sections): The term 'permission' stands for an
   action or a transformation.  The notion 'attribute' terms a
   condition, an action, or a transformation.  An attribute has a name,
   and a certain data type.  A value may be assigned to an attribute or
   it may be undefined, in case it does not have a value associated with
   the attribute.  For example, the name of the <sphere> attribute
   discussed in Section 7 is 'sphere', its data type is 'string', and
   its value may be set to 'home'.  To evaluate a condition means to
   associate either TRUE or FALSE to the condition.  Please note that
   the <identity> element is a condition whereas the <id> element is a
   parameter of that condition.  A rule matches if all conditions
   contained in TRUE. All rules where the conditions part of a rule evaluate to TRUE.

   When
   match the PS receives a request for access to privacy-sensitive data
   then it needs to be matched against a form the matching rule set. The conditions part
   of each individual rule is evaluated and as a result one or more
   rules might match.  If only a single rule matches then the result is
   determined by executing the actions and the transformations part
   following the conditions part of a rule.  However, it can also be permissions in the
   case that two or more
   matching rules contain a permission of the same
   name (e.g., two rules contain a permission named 'precision of
   geospatial location information'), but do not specify the same value
   for that permission (e.g., the two rule might specify values of '10
   km' and '200 km', respectively, for the permission named 'precision
   of geospatial location information').  This section describes the
   procedure for combining permissions in such cases.

10.2.  Algorithm

   The combining rules set are simple and depend on the data types of the
   values of permissions: Let P be combined using a policy.  Let M be the subset of P
   consisting set of combining rules r in P that match with respect to a given
   request.  Let n be a name of a permission contained in a rule r (CRs)
   described in M,
   and let M(n) be the subset of M consisting Section 10.2.

10.2.  Combining Rules (CRs)

   Each type of rules r in M that have
   a permission of name n.  For each rule r in M(n), let v(r,n) and
   d(r,n) be the value and the data type, respectively, of the attribute
   of r with name n.  Finally, let V(n) be the is combined value across all matching rules. Each
   type of all the
   permissions values v(r,n), r in M(n). action or transformation is combined separately and
   independently. The combining rules that lead
   to the resulting value V(n) are generate a combined permission.
   The combining rules depend only on the following:

   CR 1: If d(r,n)=Boolean for all r in M(n), then V(n) is given as
   follows: data type of permission. If there is a r in M(n) with v(r,n)=TRUE, then V(n)=TRUE.
      Otherwise, V(n)=FALSE.

   CR 2: If d(r,n)=Integer for all r
   particular permission type has no value in M(n), then V(n) is given as
   follows:  If v(r,n)=undefined a rule, it assumes the
   lowest possible value for all r in M(n), then V(n) is not
      specified by this specification.  Otherwise, V(n)=max{v(r,n) | r
      in M(n)}.

   CR 3: If d(r,n)=Set that permission for all r in M(n), then V(n) the purpose of
   computing the combined permission.  That value is given as
   follows:  V(n)=union of all v(r,n), by the union to data
   type for booleans (FALSE) and sets (empty set), and MUST be computed over all
      r in M(n) with v(r,n)!=undefined.

   The combining operation will result in defined
   by any extension to the largest value Common Policy for an
   Integral type, other data types.

   For boolean permissions, the OR operation for boolean, resulting permission is TRUE if and union for set.

   As only
   if at least one permission in the matching rule set has a result, applications should define values such that, for
   integers, value of
   TRUE and FALSE otherwise. For integer, real-valued and date-time
   permissions, the lowest resulting permission is the maximum value corresponds to across the most privacy, for
   booleans, false corresponds to
   permission values in the most privacy, and for matching set of rules. For sets, it is the
   empty set corresponds to
   union of values across the most privacy. permissions in the matching rule set.

10.3.  Example

   In the following example we illustrate the process of combining
   permissions.  We will consider three conditions for our purpose,
   namely those of name identity, identity (WR-ID), sphere, and validity. validity
   (from,until).  The ID column is used as a rule identifier. For
   editorial reasons the rule set in this example is represented in a table.
   Furthermore, we omit the domain part of the identity of the WR is omitted.
   For actions we WR's identity.

   We use two permissions with names actions in our example, namely X and Y. The values of X
   and Y are of data types Boolean and Integer, respectively.
   Permission X might, for example, represent the <sub-handling> action.
   For transformations we use the attribute with the name Z whose value

   The transformation, referred to as Z, uses values that can be set
   either to '+'(or 1), '+' (or 3), 'o' (or 2) or '-' (or 3). 1).  Permission Z allows
   us to show the granularity reduction whereby a value of '+' shows the
   corresponding information unrestricted unrestricted, and '-' shows nothing.  This
   permission might be related to location information or other presence
   attributes like mood.  Internally  Internally, we use the data type Integer for
   computing the permission of this attribute.

   The label 'NULL' in the table indicates that no value is available
   for a particular cell.

         Conditions                  Actions/Transformations
     +---------------------------------+---------------------+
     | Id  WR-ID    sphere  from until |  X       Y     Z    |
     +---------------------------------+---------------------+
     |  1   bob      home    A1    A2  |  TRUE    10    o    |
     |  2   alice    work    A1    A2  |  FALSE   5     +    |
     |  3   bob      work    A1    A2  |  TRUE    3     -    |
     |  4   tom      work    A1    A2  |  TRUE    5     +    |
     |  5   bob      work    A1    A3  |  undef  NULL    12    o    |
     |  6   bob      work    B1    B2  |  FALSE   10    -    |
     +---------------------------------+---------------------+

   Again for editorial reasons, we use the following abbreviations for
   the two <validity> attributes 'from' and 'until':

     A1=2003-12-24T17:00:00+01:00
     A2=2003-12-24T21:00:00+01:00
     A3=2003-12-24T23:30:00+01:00
     B1=2003-12-22T17:00:00+01:00
     B2=2003-12-23T17:00:00+01:00

   Note that B1 < B2 < A1 < A2 < A3.

   The entity 'bob' acts as a WR and requests data items.  The policy P rule set
   consists of the six rules shown in the table and identified by the
   values 1 to 6 in the 'Id' column.  The PS receives the query at 2003-
   12-24T17:15:00+01:00
   2003-12-24T17:15:00+01:00, which falls between A1 and A2.  The  In our
   example, we assume that the sphere value of the
   attribute with name 'sphere' indicating the state the PT is currently
   in is set
   to 'work'.

   As a first step, it is necessary to determine which rules fire by
   evaluating the conditions part of each of them.

   Rule 1 does not match since the sphere condition does not match.
   Rule 2 does not match as the identity of the WR (here 'alice') does
   not equal 'bob'.  Rule 3 matches since all conditions evaluate to
   TRUE.  Rule 4 does not match as the identity of the WR (here 'tom')
   does not equal 'bob'.  Rule 5 matches.  Rule 6 does not match since
   the rule is not valid anymore.  Therefore, the set M of matching
   rules consists of the

   Only rules 3 and 5.  These 5 fire. We use the actions and transformations part
   of these two rules are used to
   compute determine the combined permission V(X), V(Y), and V(Z) for each of the
   permissions X, Y, and Z: permission, as shown
   below.

             Actions/Transformations
     +-----+-----------------------+
     | Id  |  X       Y      Z     |
     +-----+-----------------------+
     |  3  |  TRUE     3     -     |
     |  5  |  undef  NULL    12     o     |
     +-----+-----------------------+

   The results of the permission combining algorithm

   Each column is shown below. treated independently. The combined value V(X) regarding the permission with name of X equals is set
   to TRUE since the NULL value equals FALSE according to the first combining rule listed above.  The
   description in Section 10.2. For the column with the name Y, we apply
   the maximum of 3 and 12 is 12, so that V(Y)=12.  For the attribute Z in this
   example combined value of Y is 12.  For
   column Z, we again compute the maximum between of 'o' and '-' (i.e., between 2 and 3) 1)
   which is 'o' (2).

   The combined permission for all three columns is
   '-'. therefore:

             Actions/Transformations
     +-----+-----------------------+
     | Id
           +-----------------------+
           |  X       Y      Z     |
     +-----+-----------------------+
     |  5
           +-----------------------+
           |  TRUE    12     -     o     |
     +-----+-----------------------+
           +-----------------------+

11.  Meta Policies

   Meta policies authorize a rulemaker rule maker to insert, update update, or delete a
   particular rule or an entire rule set.  Some authorization policies
   are required to prevent unauthorized modification of rule sets.  Meta
   policies are outside the scope of this document.

   A simple implementation could restrict access to the rule set only to
   the PT but more sophisticated mechanisms could be useful.  As an
   example of such policies policies, one could think of parents configuring the
   policies for their children.

12.  Example

   This section gives an example of an XML document valid with respect
   to the XML schema defined in Section 13.  Semantically richer
   examples can be found in documents which that extend this schema with
   application domain specific
   application-domain-specific data (e.g., location or presence
   information).

   Below a rule is shown with a condition that matches for a given
   authenticated identity (bob@example.com) and within a given time
   period.  Additionally, the rule matches only if the target has set
   its sphere to 'work'.

   <?xml version="1.0" encoding="UTF-8"?>
   <ruleset xmlns="urn:ietf:params:xml:ns:common-policy">

       <rule id="f3g44r1">
           <conditions>
               <identity>
                   <one id="sip:bob@example.com"/>
               </identity>
               <sphere value="work"/>
               <validity>
                   <from>2003-12-24T17:00:00+01:00</from>
                   <until>2003-12-24T19:00:00+01:00</until>
               </validity>
           </conditions>
           <actions/>
           <transformations/>
       </rule>
   </ruleset>

13.  XML Schema Definition

   This section provides the XML schema definition for the common policy
   markup language described in this document.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="urn:ietf:params:xml:ns:common-policy"
    xmlns:cp="urn:ietf:params:xml:ns:common-policy"
    xmlns:xs="http://www.w3.org/2001/XMLSchema"
    elementFormDefault="qualified" attributeFormDefault="unqualified">
    <!-- /ruleset -->
    <xs:element name="ruleset">
        <xs:complexType>
            <xs:complexContent>
                <xs:restriction base="xs:anyType">
                    <xs:sequence>
                        <xs:element name="rule" type="cp:ruleType"
                        minOccurs="0" maxOccurs="unbounded"/>
                    </xs:sequence>
                </xs:restriction>
            </xs:complexContent>
        </xs:complexType>
    </xs:element>
    <!-- /ruleset/rule -->
    <xs:complexType name="ruleType">
        <xs:complexContent>
            <xs:restriction base="xs:anyType">
                <xs:sequence>
                    <xs:element name="conditions"
                    type="cp:conditionsType" minOccurs="0"/>
                    <xs:element name="actions"
                    type="cp:extensibleType" minOccurs="0"/>
                    <xs:element name="transformations"
                    type="cp:extensibleType" minOccurs="0"/>
                </xs:sequence>
                <xs:attribute name="id" type="xs:ID" use="required"/>
            </xs:restriction>
        </xs:complexContent>
    </xs:complexType>
    <!-- //rule/conditions -->
    <xs:complexType name="conditionsType">
        <xs:complexContent>
            <xs:restriction base="xs:anyType">
                <xs:choice maxOccurs="unbounded">
                    <xs:element name="identity"
                    type="cp:identityType" minOccurs="0"/>
                    <xs:element name="sphere"
                    type="cp:sphereType" minOccurs="0"/>
                    <xs:element name="validity"
                    type="cp:validityType" minOccurs="0"/>
                    <xs:any namespace="##other" processContents="lax"
                    minOccurs="0" maxOccurs="unbounded"/>
                </xs:choice>
            </xs:restriction>
        </xs:complexContent>
    </xs:complexType>
    <!-- //conditions/identity -->
    <xs:complexType name="identityType">
        <xs:complexContent>
            <xs:restriction base="xs:anyType">
                <xs:choice  minOccurs="0"  minOccurs="1" maxOccurs="unbounded">
                    <xs:element name="one" type="cp:oneType"/>
                    <xs:element name="many" type="cp:manyType"/>
                    <xs:any namespace="##other" processContents="lax"/>
                </xs:choice>
            </xs:restriction>
        </xs:complexContent>
    </xs:complexType>
    <!-- //identity/one -->
    <xs:complexType name="oneType">
        <xs:complexContent>
            <xs:restriction base="xs:anyType">
                <xs:sequence>
                    <xs:any namespace="##other"
                    minOccurs="0" processContents="lax"/>
                </xs:sequence>
                <xs:attribute name="id"
                type="xs:anyURI" use="required"/>
            </xs:restriction>
        </xs:complexContent>
    </xs:complexType>
    <!-- //identity/many -->
    <xs:complexType name="manyType">
        <xs:complexContent>
            <xs:restriction base="xs:anyType">
                <xs:choice minOccurs="0" maxOccurs="unbounded">
                    <xs:element name="except" type="cp:exceptType"/>
                    <xs:any namespace="##other"
                    minOccurs="0" processContents="lax"/>
                </xs:choice>
                <xs:attribute name="domain"
                use="optional" type="xs:string"/>
            </xs:restriction>
        </xs:complexContent>
    </xs:complexType>
    <!-- //many/except -->
    <xs:complexType name="exceptType">
        <xs:attribute name="domain" type="xs:string" use="optional"/>
        <xs:attribute name="id" type="xs:anyURI" use="optional"/>
    </xs:complexType>
    <!-- //conditions/sphere -->
    <xs:complexType name="sphereType">
        <xs:complexContent>
            <xs:restriction base="xs:anyType">
                <xs:attribute name="value"
                type="xs:string" use="required"/>
            </xs:restriction>
        </xs:complexContent>
    </xs:complexType>
    <!-- //conditions/validity -->
    <xs:complexType name="validityType">
        <xs:complexContent>
            <xs:restriction base="xs:anyType">
                <xs:sequence minOccurs="0" minOccurs="1" maxOccurs="unbounded">
                    <xs:element name="from" type="xs:dateTime"/>
                    <xs:element name="until" type="xs:dateTime"/>
                </xs:sequence>
            </xs:restriction>
        </xs:complexContent>
    </xs:complexType>
    <!-- //rule/actions or //rule/transformations -->
    <xs:complexType name="extensibleType">
        <xs:complexContent>
            <xs:restriction base="xs:anyType">
                <xs:sequence>
                    <xs:any namespace="##other" processContents="lax"
                    minOccurs="0" maxOccurs="unbounded"/>
                </xs:sequence>
            </xs:restriction>
        </xs:complexContent>
    </xs:complexType>
</xs:schema>

14.  Security Considerations

   This document describes a framework for policies.  This framework is
   intended to be enhanced elsewhere towards application domain specific by application-domain-specific
   data.  Security considerations are to a great extent application data application-data
   dependent, and therefore need to be covered by documents that extend
   the framework defined in this specification.  However, new action and
   transformation permissions along with their allowed values must be
   defined in a way so that the usage of the permissions combining rules
   of Section 10 does not lower the level of privacy protection.  See
   Section 10 for more details on this privacy issue.

15.  IANA Considerations

   This section registers a new XML namespace, a new XML schema schema, and a
   new MIME-type. MIME type.  This section registers a new XML namespace per the
   procedures in [4].

15.1.  Common Policy Namespace Registration

   URI:  urn:ietf:params:xml:ns:common-policy

   Registrant Contact:  IETF Geopriv Working Group, GEOPRIV working group, Henning Schulzrinne
      (hgs+geopriv@cs.columbia.edu).

   XML:

   BEGIN
   <?xml version="1.0"?>
   <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN"
     "http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd">
   <html xmlns="http://www.w3.org/1999/xhtml">
   <head>
     <meta http-equiv="content-type"
           content="text/html;charset=iso-8859-1"/>
     <title>Common Policy Namespace</title>
   </head>
   <body>
     <h1>Namespace for Common Authorization Policies</h1>
     <h2>urn:ietf:params:xml:ns:common-policy</h2>
   <p>See <a href="[URL of published RFC]">RFCXXXX
       [NOTE TO IANA/RFC-EDITOR:
        Please replace XXXX with the href="ftp://ftp.rfc-editor.org/in-notes/rfc4745.txt">
      RFC number of this
       specification.]</a>.</p> 4745</a>.</p>
   </body>
   </html>
   END

15.2.  Content-type registration Registration for 'application/auth-policy+xml'

   This specification requests the registration of a new MIME type
   according to the procedures of RFC 4288 [5] and guidelines in RFC
   3023 [6].

   MIME media type name:  application

   MIME subtype name:  auth-policy+xml

   Mandatory parameters:  none

   Optional parameters:  charset

      Indicates the character encoding of enclosed XML.

   Encoding considerations:

      Uses XML, which can employ 8-bit characters, depending on the
      character encoding used.  See RFC 3023 [6], Section 3.2.

   Security considerations:

      This content type is designed to carry authorization policies.
      Appropriate precautions should be adopted to limit disclosure of
      this information.  Please refer to Section 14 of RFCXXXX [NOTE TO
      IANA/RFC-EDITOR: Please replace XXXX with the RFC number of this
      specification.] 4745 and to
      the security considerations described in Section 10 of RFC 3023
      [6] for more information.

   Interoperability considerations:  None

   Published specification:  RFCXXXX [NOTE TO IANA/RFC-EDITOR: Please
      replace XXXX with the  RFC number of this specification.] this
      document 4745

   Applications which use this media type:

      Presence- and location-based systems
   Additional information:

      Magic Number:  None

      File Extension:  .apxml

      Macintosh file type code:  'TEXT'

   Personal and email address for further information:
      Hannes Tschofenig, Hannes.Tschofenig@siemens.com

   Intended usage:  LIMITED USE

   Author:

      This specification is a work item of the IETF GEOPRIV working
      group, with mailing list address <geopriv@ietf.org>.

   Change controller:

      The IESG <iesg@ietf.org>

15.3.  Common Policy Schema Registration

   URI:  urn:ietf:params:xml:schema:common-policy

   Registrant Contact:  IETF Geopriv Working Group, GEOPRIV working group, Henning Schulzrinne
      (hgs+geopriv@cs.columbia.edu).

   XML:  The XML schema to be registered is contained in Section 13.
      Its first line is

   <?xml version="1.0" encoding="UTF-8"?>

   and its last line is

   </xs:schema>

16.  References

16.1.  Normative References

   [1]  Bradner, S., "Key words for use in RFCs to Indicate Requirement
        Levels", BCP 14, RFC 2119, March 1997.

   [2]  Duerst, M. and M. Suignard, "Internationalized Resource
        Identifiers (IRIs)", RFC 3987, January 2005.

   [3]  Faltstrom, P., Hoffman, P., and A. Costello, "Internationalizing
        Domain Names in Applications (IDNA)", RFC 3490, March 2003.

   [4]  Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
        January 2004.

   [5]  Freed, N. and J. Klensin, "Media Type Specifications and
        Registration Procedures", BCP 13, RFC 4288, December 2005.

   [6]  Murata, M., St. Laurent, S., and D. Kohn, "XML Media Types",
        RFC 3023, January 2001.

16.2.  Informative References

   [7]  Rosenberg, J., "Presence Authorization Rules",
         draft-ietf-simple-presence-rules-07 (work Work in progress), Progress,
        June 2006.

   [8]  Schulzrinne, H., Tschofenig, H., Morris, J., Cuellar, J., and J.
        Polk, "A Document Format for Expressing Privacy Preferences for
        Location Information",
         draft-ietf-geopriv-policy-08 (work Work in progress), Progress, February 2006.

   [9]  Cuellar, J., Morris, J., Mulligan, D., Peterson, J., and J.
        Polk, "Geopriv Requirements", RFC 3693, February 2004.

   [10] Schulzrinne, H., Gurbani, V., Kyzivat, P., and J. Rosenberg,
        "RPID: Rich Presence Extensions to the Presence Information Data
        Format (PIDF)", RFC 4480, July 2006.

Appendix A.  Contributors

   We would like to thank Christian Guenther for his help with initial
   versions of this document.

Appendix B.  Acknowledgments

   This document is partially based on the discussions within the IETF
   GEOPRIV working group.  Discussions at the Geopriv Interim Meeting
   2003 in Washington, D.C., helped the working group to make progress
   on the authorization policies based on the discussions among the
   participants.

   We particularly want to thank Allison Mankin <mankin@psg.com>,
   Randall Gellens <rg+ietf@qualcomm.com>, Andrew Newton
   <anewton@ecotroph.net>, Ted Hardie <hardie@qualcomm.com> <hardie@qualcomm.com>, and Jon
   Peterson <jon.peterson@neustar.biz> for discussing a number of
   details with us.  They helped us to improve the quality of this
   document.  Allison, Ted Ted, and Andrew also helped us to make good
   progress with the internationalization support of the identifier/
   domain attributes.

   Furthermore, we would like to thank the IETF SIMPLE working group for
   their discussions of J. Rosenberg's draft on presence authorization
   policies.  We would also like to thank Stefan Berg, Murugaraj
   Shanmugam, Christian Schmidt, Martin Thomson, Markus Isomaki, Aki
   Niemi, Eva Maria Leppanen Leppanen, Josip Matanovic, and Mark Baker for their
   comments.  Martin Thomson helped us with the XML schema.  Mark Baker
   provided a review of the media type.  Scott Brim provided a review on
   behalf of the General Area Review Team.

Authors' Addresses

   Henning Schulzrinne
   Columbia University
   Department of Computer Science
   450 Computer Science Building
   New York, NY  10027
   USA

   Phone: +1 212 939 7042
   Email:
   EMail: schulzrinne@cs.columbia.edu
   URI:   http://www.cs.columbia.edu/~hgs

   Hannes Tschofenig
   Siemens Networks GmbH & Co KG
   Otto-Hahn-Ring 6
   Munich, Bavaria  81739
   Germany

   Email:

   EMail: Hannes.Tschofenig@siemens.com
   URI:   http://www.tschofenig.com

   John B. Morris, Jr.
   Center for Democracy and Technology
   1634 I Street NW, Suite 1100
   Washington, DC  20006
   USA

   Email:

   EMail: jmorris@cdt.org
   URI:   http://www.cdt.org

   Jorge R. Cuellar
   Siemens
   Otto-Hahn-Ring 6
   Munich, Bavaria  81739
   Germany

   Email:

   EMail: Jorge.Cuellar@siemens.com
   James Polk
   Cisco
   2200 East President George Bush Turnpike
   Richardson, Texas  75082
   USA

   Email:

   EMail: jmpolk@cisco.com

   Jonathan Rosenberg
   Cisco Systems
   600 Lanidex Plaza
   Parsippany, New York  07054
   USA

   Email:

   EMail: jdrosen@cisco.com
   URI:   http://www.jdrosen.net

Full Copyright Statement

   Copyright (C) The Internet Society (2006). IETF Trust (2007).

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors
   retain all their rights.

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY SOCIETY, THE IETF TRUST,
   AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES,
   EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
   THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY
   IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
   PURPOSE.

Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at
   ietf-ipr@ietf.org.

Acknowledgment

Acknowledgement

   Funding for the RFC Editor function is currently provided by the IETF
   Administrative Support Activity (IASA).
   Internet Society.